

Published on Web 04/11/2002

Identification of Iron(III) Peroxo Species in the Active Site of the Superoxide Reductase SOR from *Desulfoarculus baarsii*

Christelle Mathé,†,§ Tony A. Mattioli,*,† Olivier Horner,‡ Murielle Lombard,§ Jean-Marc Latour,‡ Marc Fontecave,§ and Vincent Nivière*,§

Laboratoire de Biophysique du Stress Oxydant, SBE/DBJC CEA/SACLAY, 91191 Gif-sur-Yvette Cedex, France, and Laboratoire de Physicochimie des Métaux en Biologie FRE 2427 and Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DRDC-CEA/CNRS/Université J. Fourier, CEA-Grenoble, 38054 Grenoble Cedex 9, France

Received January 25, 2002

Superoxide reductase (SOR) is a newly discovered activity by which some anaerobic or microaerophilic organisms eliminate superoxide, $O_2^{\bullet -.1}$ The SOR-catalyzed reaction differs from that of well-known superoxide dismutases SOD in that it does not produce O_2 , but instead reduces by one electron $O_2^{\bullet -}$ to form H_2O_2 exclusively: $O_2^{\bullet -} + 1e^- + 2H^+ \rightarrow H_2O_2$.

The active site of SOR consists of an Fe^{2+} center (center II) in an unusual [His₄ Cys₁] square-pyramidal pentacoordination.² It reacts specifically at a nearly diffusion-controlled rate with $O_2^{\bullet-}$, generating H_2O_2 and the oxidized form of the enzyme, the ferric iron center II. The SORs (originally called desulfoferrodoxin) found in some sulfate reducing bacteria, e.g. *Desulfoarculus baarsii*^{1b} and *Desulfovibrio desulfuricans*, ^{2a,3} contain an additional mononuclear Fe^{3+} center, called center I, coordinated by four cysteines with a distorted rubredoxin-type structure. However, center I is not required for the reaction and, up to now, its function remains unknown. ^{1b-c}

Recent pulse radiolysis studies of the reaction of center II with $O_2^{\bullet-}$ have allowed the observation, in the micro- and millisecond time scale, of intermediates characterized by absorption bands in the 550-650 nm range.⁴ These transient species were proposed to be Fe^{3+} peroxo complexes, from which H_2O_2 is liberated, on the assumption of an inner-sphere mechanism for $O_2^{\bullet-}$ reduction and on the basis that the corresponding absorption bands were slightly different from those of the final ferric iron center II.⁴

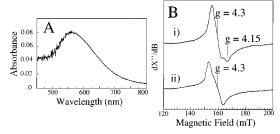
On the basis of the crystal structure^{2b} and spectroscopic studies⁵ of the SOR from *Pyrococcus furiosus*, it has been proposed that upon oxidation the iron active site becomes six-coordinated, as the consequence of a local protein domain movement that places a strictly conserved glutamate (Glu47 in the SOR from *D. baarsii*) in the free coordination site. We have mutated the Glu47 to alanine (E47A) in the SOR from *D. baarsii* and found that this mutation did not affect the kinetics of formation of the above-mentioned intermediates detected by pulse radiolysis.^{4a,b} However, because this Glu residue becomes a ligand for the oxidized iron, a likely hypothesis could be that it serves to release H₂O₂ from the Fe³⁺ peroxo intermediate by substitution in the iron coordination sphere.

Here, we have reacted SOR E47A from *D. baarsii* directly with H_2O_2 and have found that the active site of the mutant can indeed transiently stabilize an Fe³⁺ peroxo species that could be spectroscopically characterized.

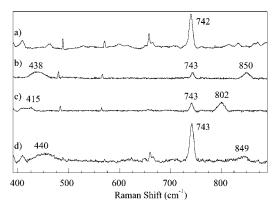
When we rapidly manually mixed SOR E47A from *D. baarsii* with 6 equivalents of H_2O_2 , a UV-visible absorption feature with a maximum at 560 nm, characteristic for the oxidation of the iron center II,^{6a} was immediately observed (Figure 1A).^{6b} The 4.2 K EPR spectrum,⁷ after subtraction of signals from center I, recorded just after addition of 6 equiv of H_2O_2 was complex, with a major feature at g=4.3 and a minor one at g=4.15 (Figure 1Bi). The former one is comparable to that of an EPR spectrum of SOR E47A oxidized with hexachloroiridate(IV) (Figure 1Bii). It is characteristic for a high-spin Fe³⁺ in a rhombic ligand field.^{1b,3} No other signals in the g=2 and 8-10 regions were observed. At longer incubation time (10 min) with H_2O_2 , the feature at g=4.15 completely disappeared (data not shown).

Resonance Raman (RR) spectra at 15 K,⁸ taken from the SOR E47A frozen immediately after addition of H₂O₂, indicated the presence of two new bands at 850 and 438 cm⁻¹ (Figure 2b), which were not present when SOR was oxidized with hexachloroiridate-(IV) (Figure 2a). The RR spectra also exhibit a band at 742 cm⁻¹ that has been attributed to an internal C–S stretching mode of the CysS–Fe³⁺ active site.³ When the same Raman measurements were made after mixing with H₂¹⁸O₂, the 850 and 438 cm⁻¹ bands were observed to downshift to 802 and 415 cm⁻¹, respectively (Figure 2c). RR measurements in D₂O buffer indicated no significant shifts of the 850 and 438 cm⁻¹ bands to within 1 cm⁻¹ (cf. Supporting Information).

When the reaction was carried out with the wild-type SOR and $\rm H_2O_2$, under the same conditions that we described above for the mutant, an intense RR band at 743 cm⁻¹ was observed (Figure 2d). This band can be used as a marker of the amount of Fe³⁺ formed in these conditions. The bands at 850 and 438 cm⁻¹ observed in the case of the mutant with a similar amplitude as that of the 743 cm⁻¹ band (Figure 2b) were now in the case of the wild-type found to be very weak compared to the 743 cm⁻¹ band (Figure 2d). However, they exhibited the same shift upon ¹⁸O substitution as reported in the case of the mutant (data not shown). The 4.2 K EPR spectra of the SOR wild-type, after subtraction of the signal of center I, and recorded immediately after addition of $\rm H_2O_2$, exhibited the rhombic signal at g=4.3, ^{1b,3} whereas the feature at g=4.15 was very weak and completely vanished within a few minutes (data not shown).


The observed RR frequencies at 850 and 438 cm⁻¹ and their 18 O isotopic shifts (-48 and -23 cm⁻¹) are consistent with the ν (O-O) and ν (Fe-O₂) stretching modes, respectively, of an Fe³⁺- peroxo species. The lack of deuterium isotopic shifts suggests that this peroxo species is not protonated. We thus conclude that H₂O₂ can oxidize SOR and bind to the ferric center II to yield a transient

^{*} Corresponding author. E-mail: (V.N.) vniviere@cea.fr. (T.A.M.) mattioli@dsvidf.cea.fr.


[†] Laboratoire de Biophysique du Stress Oxydant, SBE/DBJC CEA/SACLAY.

§ Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DRDC-CEA/CNRS/Université J. Fourier.

Laboratoire de Physicochimie des Métaux en Biologie FRE 2427, DRDC-CEA/CNRS/Université J. Fourier.

Figure 1. UV—visible (A) and X-band EPR spectra (B) of SOR E47A mutant from *D. baarsii* (200 μ M in 50 mM Tris/HCl, pH 7.6) treated with 6 equiv of H₂O₂ or 3 equiv of K₂IrCl₆. (A) UV—visible spectrum recorded 5 s after addition of H₂O₂. (B) EPR spectrum after treatment with (i) H₂O₂ and immediate freezing after mixing and (ii) K₂IrCl₆. The contribution of the high-spin Fe³⁺ center I [Fe(SCys)₄] was subtracted from each UV–visible and EPR spectrum. EPR conditions: temperature 4.2 K, microwave frequency 9.676 GHz, power 20 mW, modulation 1.0 mT/100 kHz.

Figure 2. Resonance Raman spectra of SOR E47A mutant and wild-type forms from *D. baarsii* (1 mM in 50 mM Tris/HCl, pH 7.6) excited at 647.1 nm (50 mW) at 15 K. (a) SOR E47A treated with 3 equiv of K_2IrCl_6 . (b) SOR E47A treated with 6 equiv of H_2O_2 , rapidly mixed and immediately frozen (less than 5 s). (c) SOR E47A treated with $H_2^{18}O_2$, same conditions as part b. (d) SOR wild-type treated with 6 equiv of H_2O_2 rapidly mixed and immediately frozen (less than 5 s).

high-spin Fe³⁺—peroxo species, associated with the feature at g = 4.15, as observed from the 4.2 K EPR spectra. The absorption band at 560 nm resulted probably mainly from the Cys-to-Fe³⁺ charge-transfer band,^{3,5} but also contains a contribution of the peroxo-to-iron Fe³⁺ charge-transfer band.⁹ The resolution of these two charge-transfer bands could be achieved by a RR excitation profile, but this is complicated because of the strong interference of center I when excitations are made below 647 nm.³

The observed Raman frequencies are comparable to those described for the end-on high-spin Fe^{3+} —OOH species in oxyhemerythrin, which showed deuterium isotope shifts. ¹⁰ However, for SOR reported here, the unusually low $Fe-O_2$ frequency (438 cm⁻¹) strongly suggests a side-on η^2 - Fe^{3+} —peroxo species ¹¹ as found in high-spin Fe complexes such as $[(EDTA)Fe(\eta^2-O_2)]^{3+}$, for example. ⁹ In addition, the lack of deuterium shift, suggesting a nonprotonated peroxo species, is also consistent with a side-on η^2 - Fe^{3+} —peroxo species since it is expected to be more stable in the unprotonated form. Such a coordination in the SOR active site would thus imply either a heptacoordination for the iron or a loss of one of the imidazole ligands, but up to now there is no evidence for such possible coordination changes. ⁵ Clearly, relevant model Fe—peroxo species with sulfur ligands, not yet available, would support our proposal of a side-on peroxo coordination in SOR.

In conclusion, the data presented here first show that the SOR active site can accommodate an Fe^{3+} —peroxo species and thus support the hypothesis that reduction of $O_2^{\bullet-}$ proceeds through such intermediates. To our knowledge, this is the first Fe^{3+} —(hydro)-

Scheme 1

$$S^{-}Fe^{2+} + H_2O_2$$
 $S^{-}Fe^{3+}$ H_2O_2 Glu_47 O

peroxo species that has been identified in a mononuclear nonheme iron protein, with such an unusual active site. Current RR experiments in the laboratory are directed in order to identify Fe³⁺ peroxo species formed immediately after reaction with O,**-.

Second, the results suggest that the conserved Glu47 might serve to help H_2O_2 release, as illustrated in Scheme 1, since mutation of that residue to alanine results in stabilization of the Fe³+ peroxide. It should be noted that the presence of the cysteinate trans to the peroxide may also be crucial in promoting H_2O_2 dissociation from the Fe³+-peroxo intermediate, by pushing electron density on the iron. As a matter of fact, the Fe-O₂ bond observed here, with $\nu = 438~\text{cm}^{-1}$, is particularly weak and the O-O bond with $\nu = 850~\text{cm}^{-1}$ strong, when compared to the corresponding values reported for model complexes that promote O-O cleavage and formation of high-valent Fe-O species.

Acknowledgment. T.A.M. thanks P. Mathis and A. W. Rutherford for interest and support in this work. V.N. and M.L. thank S. Menage for helpful discussions.

Supporting Information Available: Plot of deuterium isotopic effects on the RR bands at 850 and 438 cm⁻¹ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Jenney, F. E., Jr.; Verhagen, M. F. J. M.; Cui, X.; Adams, M. W. W. Science 1999, 286, 306-309.
 (b) Lombard, M.; Fontecave, M.; Touati, D.; Nivière, V. J. Biol. Chem. 2000, 275, 115-121.
 (c) Lombard, M.; Touati, D.; M.; Fontecave, M.; Nivière, V. J. Biol. Chem. 2000, 275, 27021-27026.
- (2) (a) Coelho, A. V.; Matias, P.; Fülöp, V.; Thompson, A.; Gonzalez, A.; Coronado, M. A. J. Biol. Inorg. Chem. 1997, 2, 680–689. (b) Andrew, P. Y.; Hu, Y.; Jenney, F. E.; Adams, M. W. W.; Rees, D. C. Biochemistry 2000, 39, 2499–2508.
- (3) Tavares, P.; Ravi, N.; Moura, J. J. G.; LeGall, J.; Huang, Y. H.; Crouse, B. R.; Johnson, M. K.; Huynh, B. H.; Moura, I. J. Biol. Chem. 1994, 269, 10504-10510.
- (4) (a) Lombard, M.; Houée-Levin, C.; Touati, D.; Fontecave, M.; Nivière, V. Biochemistry 2001, 40, 5032-5040. (b) The effect of the E47A mutation on the decay of the intermediates could not be investigated with the experimental procedure used in ref 4a. (c) Coulter, E. D.; Emerson, J. P.; Kurtz, D. M., Jr.; Cabelli, D. E. J. Am. Chem. Soc. 2000, 122, 11555-11556. (d) Nivière, V.; Lombard, M.; Fontecave, M.; Houée-Levin, C. FEBS Lett. 2001, 497, 171-173. (e) Abreu, I. A.; Saraiva, L. M.; Soares, C. M.; Teixeira, M.; Cabelli, D. E. J. Biol. Chem. 2001, 276, 38995-39001.
- (5) Clay, M. D.; Jenney, F. E.; Hagedoorn, P. L.; George, G. N.; Adams, M. W. W.; Johnson, M. J. J. Am. Chem. Soc. 2002, 124, 788–813.
- (6) (a) The absorption spectrum of center II of the SOR E47A from D. baarsii oxidized with a slight molar excess of K₂IrCl₆ is characterized by a band centered at 560 nm, ε = 1.6 mM⁻¹ cm⁻¹. (b) At longer incubation times, the 560 nm absorption band rapidely shifts at 650 nm with a decrease in intensity, reflecting a possible degradation process due to an excess of H₂O₂.
- (7) EPR spectra were recorded on a Bruker EMX spectrometer. For low-temperature studies, an Oxford Instrument continuous-flow helium cryostat and temperature control system were used.
- (8) Resonance Raman spectra were recorded using instrumentation as reported in: Ollagnier-de-Choudens, S.; Mattioli, T. A.; Takahashi, Y.; Fontecave, M. J. Biol. Chem. 2001, 276, 22604–22607. The final concentration of protein, held in a He gas circulating cryostat at 15 K, was 1 mM and 50 mW of 647.1 nm radiation from a Kr⁺ laser (Coherent Innova 90) was used to excite the spectrum. Spectra were accumulated for 40 min and baselines were corrected using GRAMS 32 (Galactic Industries).
- (9) Girerd, J. J.; Banse, F.; Simaan, A. J. Struct. Bonding 2000, 97, 145–177 and references herein.
- (10) Stenkamp, R. E. Chem. Rev. 1994, 94, 715-726 and references herein.
 (11) A high-spin mononuclear Fe³⁺-OOH complex displays a much stronger Fe-O₂ bond: Wada, A.; Ogo, S.; Nagatomo, S.; Kitagawa, T.; Watanabe, Y.; Jitsukawa, K.; Masuda, H. Inorg. Chem. 2002, 41, 616-618.

JA025707V